Sympathetic regulation of the human cerebrovascular response to carbon dioxide.

نویسندگان

  • K C Peebles
  • O G Ball
  • B A MacRae
  • H M Horsman
  • Y C Tzeng
چکیده

Although the cerebrovasculature is known to be exquisitely sensitive to CO(2), there is no consensus on whether the sympathetic nervous system plays a role in regulating cerebrovascular responses to changes in arterial CO(2). To address this question, we investigated human cerebrovascular CO(2) reactivity in healthy participants randomly assigned to the α(1)-adrenoreceptor blockade group (9 participants; oral prazosin, 0.05 mg/kg) or the placebo control (9 participants) group. We recorded mean arterial blood pressure (MAP), heart rate (HR), mean middle cerebral artery flow velocity (MCA(V mean)), and partial pressure of end-tidal CO(2) (Pet(CO(2))) during 5% CO(2) inhalation and voluntary hyperventilation. CO(2) reactivity was quantified as the slope of the linear relationship between breath-to-breath Pet(CO(2)) and the average MCAv(mean) within successive breathes after accounting for MAP as a covariate. Prazosin did not alter resting HR, Pet(CO(2)), MAP, or MCA(V mean). The reduction in hypocapnic CO(2) reactivity following prazosin (-0.48 ± 0.093 cm·s(-1) · mmHg(-1)) was greater compared with placebo (-0.19 ± 0.087 cm · s(-1) · mmHg(-1); P < 0.05 for interaction). In contrast, the change in hypercapnic CO(2) reactivity following prazosin (-0.23 cm · s(-1) · mmHg(-1)) was similar to placebo (-0.31 cm · s(-1) · mmHg(-1); P = 0.50 for interaction). These data indicate that the sympathetic nervous system contributes to CO(2) reactivity via α(1)-adrenoreceptors; blocking this pathway with prazosin reduces CO(2) reactivity to hypocapnia but not hypercapnia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla

To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...

متن کامل

Tonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla

To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...

متن کامل

Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans.

Recent studies suggest that activation of the sympathetic nervous system either directly or indirectly influences cerebrovascular tone in humans even within the autoregulatory range. In 6 healthy subjects (aged 29+/-4 years), we used transcranial Doppler sonography to determine cerebral blood flow velocity during sympathetic activation elicited through head-up tilt (HUT) and sympathetic deactiv...

متن کامل

Sympathetic control of cerebral blood flow in dogs.

The effect of sympathetic stimulation on cerebral blood flow was investigated in dogs anesthetized with chloralose. A preparation has been developed for the moment-to-moment measurement of cerebral venous outflow with an electromagnetic flow transducer. The brain's arterial supply was left undisturbed. The sympathetic innervation of the cerebral vessels was stimulated at the stellate ganglion (...

متن کامل

The effect of sympathetic denervation on cerebral CO2 sensitivity.

The Effect of Sympathetic Denervation on Cerebral C Sensitivitv • The responsiveness of cerebral blood flow to changes in arterial carbon dioxide tension was determined in six monkeys following bilateral superior cervical ganglionectomy. Experiments were conducted 10 to 14 days following the removal of both ganglions using phencyclidine hydrochloride as the anesthetic agent. Following the initi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 5  شماره 

صفحات  -

تاریخ انتشار 2012